Fine-tuning transformers for PV detection In varying resolutions
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2. For medium resolution Sentinel, fine-tuning the first two blocks gives
better performance than others. Our Inturtion Is that the data domain
shifts between two datasets Is significant [shown In discussion section].

3. Out of sample dataset evaluation shows poor generalizability across
domains.

Why VIiT? Everyone Is paying attention! During intial
experiments with ResNetl3, we found that the Vil
archrtecture provided significant performance leverage and
more stability across epochs without overfitting.
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