
Generative Editing for Adversarial Attacks
Matei Armănașu Rajanie Prabha Sean Roelofs

Motivation

Given the wide adoption of deep learning models, it is important to be aware on how these

networks can be fooled to produce strange and potentially dangerous behaviors. An adversarial

example is an instance with small, intentional feature perturbations that cause a machine learning

model tomake a false prediction. So far, there aremanyways to generate such examples. Our goal

is to explore a variant on adversarial image generation, using a generative network to produce an

arbitrary quantity of edited images after training against a single classifier. We specify the fooling

label which makes this a targeted attack. We compare this approach to other adversarial methods,

and explore potential architectures for this adversarial generator.

Dataset

We use the Tiny ImageNet dataset from Le and Yang [2015] for our experiments. The dataset

contains 100,000 images of 200 classes (500 for each class) and each image is of 64 × 64 × 3
resolution, with training, testing, and validation splits already defined across the dataset. Some

samples are shown below:

Adversarial Attacks

Images designed to trick classification networks into predicting a different class, while

maintaining semantic integrity to humans.

Relevant for understanding the weaknesses of classifiers, and can provide additional data to

help guide robust design.

Often rely on having direct access to network structure and weights (white-box) to

backpropagate gradient, but black-box approaches also exist.

Core concept is to find the shortest distance in the space of images from the original image to

one which is classified differently by the network, defined by the gradient of the classification

with respect to the input.

Samples below shows example adversarial images generated by the Fast Gradient Sign

Method. Target class is Praying Mantis.

Generative Network

Figure 1. Our proposed training architecture. Dashed lines represent potential additions to the model for future

work. Dotted lines represent loss flow.

Generator takes in an image I as input, sized for input to a given classifier C.

Generator outputs an image I’ of the same size, perturbed such that C believes it to be from a

target class t.

Generator architecture uses a series of convolutional layers, and an optional residual mode in

which the input image is added to the output to create a ResNet-style block network.

Training process is white-box, relies on access to classifier for backpropagation.

Loss functions (for generator G, classifier C, image i, target class c, tuning parameter α, and
Categorical Cross-Entropy loss CCE(·, ·)): LMSE = α

64×64×3||i − G(i)||22,
LAdv. = CCE(c, C(G(i)))

Fast Gradient Sign Baselines

Gradient based white-box attack, focused on speed of

creation. Only requires a single backpropagation step per

image.

Varying ε provides a trade-off between image quality and

adversarial strength.

Best empirical results maintain a SSIM above 0.9, can be

used as a cutoff point for ”realistic” adversarial images.

Images from the Adversarial Attacks section were extracted

from the ε = 0.2 run.

ε Metrics

SSIM PSNR Acc.

0.05 0.996 32.04 0.134

0.20 0.950 20.00 0.213

0.30 0.906 16.48 0.149

0.40 0.855 13.98 0.111

0.60 0.748 10.46 0.061

Table 1. Metrics on the results produced

by FGSM for varying values of the scale

parameter ε.

Experimental Results

All generators trained over 50 epochs on TinyIm-

agenet. Best accuracy with ’realistic’ output was

8%, significantlyworse than FGSM. State-of-the-

art accuracy is near 100%, but only achieved

when images were obviously modified.

Experiment Metrics

β LR SSIM PSNR Acc.

0.0001 0.001 0.560 10.75 0.944

0.001 0.00001 0.771 17.04 0.020

0.001 0.001 0.783 14.83 0.786

0.001 0.01 0.778 14.55 0.750

0.001 0.1 0.363 9.534 0.004

0.01 0.001 0.935 22.56 0.080

Table 2. Metrics on various generator hyperparameters.

Accuracy values marked in red do not outperform the

natural rate at which the target class appears in the

dataset.

Visualizations

Figure 2. Left: Perturbations generated by a network trained with β= 0.01, LR = 0.001. Target class is Praying

Mantis. Right: Output images with perturbations added in.

Variant Tests

Evaluation on the training set to check for overfitting.

Potential issues when both classifier and generator are

trained on the same data sequentially.

Results show little change from baselines on validation

set, indicate poor performance likely from underfitting

instead.

Evaluation against EfficientNet to check for

transferability, a feature observed in other papers

where images made to fool one classifier work on

another.

Results show no fooling whatsoever. Possible that

EfficientNet is too strong, or generator is simply too

weak.

Experiment Metrics

SSIM PSNR Acc.

Training Set 0.779 14.55 0.819

Evaluation 0.936 22.56 0.104

EfficientNet 0.781 14.55 0.004

Evaluation 0.935 22.55 0.004

Table 3. Metrics across variant evaluations to

explore model strength. Tests for each variant

were performed using the models from row 1

(β= .0001, LR = .001) and row 6 (β= .01, LR =

.001) from Table 2 respectively.

Conclusion

Generative networks show a potential to be used for the task of adversarial image generation,

but the process of training one is difficult to tune for achieving strong results. While the theory

of only needing access to a classifier once and then being able to produce an arbitrary number

of adversarial examples is appealing, training requires a large number of iterations and did not

manage to outperform FGSM, which only requires a single backpropagation step per batch of

images to be modified. Time spent resolving issues with training that stemmed from issues with

the EfficientNet classifier also limited our ability to fully explore the problem, instead of checking

the model performance on more well-known tasks such as image generation from random noise,

redefining losses to avoid issues of saturation, and pushing hyperparameters to extremes to test

loss flow.

Scan for Code:

https://github.com/matei-armanasu/CS-236-Final-Project CS 236, December 3, 2021, Stanford

